X-ray structure of Novamyl, the five-domain "maltogenic" alpha-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7A resolution.

نویسندگان

  • Z Dauter
  • M Dauter
  • A M Brzozowski
  • S Christensen
  • T V Borchert
  • L Beier
  • K S Wilson
  • G J Davies
چکیده

The three-dimensional structure of the Bacillus stearothermophilus "maltogenic" alpha-amylase, Novamyl, has been determined by X-ray crystallography at a resolution of 1.7 A. Unlike conventional alpha-amylases from glycoside hydrolase family 13, Novamyl exhibits the five-domain structure more usually associated with cyclodextrin glycosyltransferase. Complexes of the enzyme with both maltose and the inhibitor acarbose have been characterized. In the maltose complex, two molecules of maltose are found in the -1 to -2 and +2 to +3 subsites of the active site, with two more on the C and E domains. The C-domain maltose occupies a position identical to one previously observed in the Bacillus circulans CGTase structure [Lawson, C. L., et al. (1994) J. Mol. Biol. 236, 590-600], suggesting that the C-domain plays a genuine biological role in saccharide binding. In the acarbose-maltose complex, the tetrasaccharide inhibitor acarbose is found as an extended hexasaccharide species, bound in the -3 to +3 subsites. The transition state mimicking pseudosaccharide is bound in the -1 subsite of the enzyme in a 2H3 half-chair conformation, as expected. The active site of Novamyl lies in an open gully, fully consistent with its ability to perform internal cleavage via an endo as opposed to an exo activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin.

The specificity of Bacillus stearothermophilus TRS40 neopullulanase toward amylose and amylopectin was analyzed. Although this neopullulanase completely hydrolyzed amylose to produce maltose as the main product, it scarcely hydrolyzed amylopectin. The molecular mass of amylopectin was decreased by only one order of magnitude, from approximately 10(8) to 10(7) Da. Furthermore, this neopullulanas...

متن کامل

Induction of Alpha-amylase of Bacillus Stearothermophilus by Maltodextrins.

Welker, N. E. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Induction of alpha-amylase of Bacillus stearothermophilus by maltodextrins. J. Bacteriol. 86:687-691. 1963.-Technical-grade maltose contained 3.5% glucose, 0.5% maltotriose, and 2.5% of the higher molecular weight maltodextrins. The first five homologues (maltose being the first in the series) of the maltodextrin ...

متن کامل

Structure of a Bacillus halmapalus family 13 alpha-amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1 A resolution.

The enzymatic digestion of starch by alpha-amylases is one of the key biotechnological reactions of recent times. In the search for industrial biocatalysts, the family GH13 alpha-amylase BHA from Bacillus halmapalus has been cloned and expressed. The three-dimensional structure at 2.1 A resolution has been determined in complex with the (pseudo)tetrasaccharide inhibitor acarbose. Acarbose is fo...

متن کامل

Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from Bacillus stearothermophilus expressed in Bacillus subtilis.

BACKGROUND The maltogenic amylase from Bacillus stearothermophilus (BSMA) is a valuable biocatalyst that has been used to transglycosylate natural glycosides to improve solubility. To ensure safety, BSMA was produced in Bacillus subtilis, using new shuttle vector-based expression vectors. The transglycosylation of puerarin was also conducted with crude BSMA and analyzed. RESULTS Two expressio...

متن کامل

Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity.

Cyclodextrin glycosyltransferase (CGTase) enzymes from various bacteria catalyze the formation of cyclodextrins from starch. The Bacillus stearothermophilus maltogenic alpha-amylase (G2-amylase is structurally very similar to CGTases, but converts starch into maltose. Comparison of the three-dimensional structures revealed two large differences in the substrate binding clefts. (i) The loop form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 26  شماره 

صفحات  -

تاریخ انتشار 1999